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Generalized Ehrenfest Theorem for Nonlinear
SchroÈ dinger Equations

T. G. Bodurov1
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It is shown that the Ehrenfest theorem can be generalized so that it is valid also
for all space-localized solutions c of the nonlinear SchroÈ dinger equations (in one
or more space dimensions). Then it is shown that as a consequence, the motion
of the localized c -field as a whole obeys the laws of classical mechanics and
those of classical electrodynamics if the interaction of the c -field with an external
electromagnetic field is defined by the rules of quantum mechanics applied to
the nonlinear SchroÈ dinger equation for c (in exactly the same manner as to the
linear SchroÈ dinger equation). This establishes the existence of a deep link between
the nonlinear SchroÈ dinger equations and classical mechanics and electrodynamics.

1. INTRODUCTION

The adjective space-localized will appear many times in this paper. The

meaning assigned to it for the present purposes is given by the following:

Definition. A singularity-free function c 5 c (x, t) of the coordinates xi

and the time t will be called space-localized (or localized) if | c (x, t) | ® 0

sufficiently fast when | x | ® ` , so that its Hermitian norm ^ c , c & remains
finite for all time:

^ c , c & 5 # c * c d 3x , ` (1.1)

It is known that certain nonlinear complex field equations in one or more

dimensions possess space-localized solutions (Berestycki and Lions, 1983),

including solitons (in the one-dimensional case). Several authors have con-
cluded, with various degrees of generality, that if interaction terms are intro-

duced in those equations according to the rule
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-
- x m ®

-
- x m 1 igA m , m 5 0, 1, 2, 3 (1.2)

where g is an arbitrary, real constant; then (under certain conditions) the

motion of the localized c -field, as a discrete entity, is identical to that of a

point charge in an electromagnetic field whose 4-potential is A m .
The first to reach the above conclusion appears to have been Rosen

(1939, p. 98). His argument is based on field energy considerations.

Bialynicki-Birula and Mycielski (1976), investigating a nonlinear
SchroÈ dinger (NLS) equation with a logarithmic nonlinear term, found that

this equation admits closed-form localized solutions, which they called

gaussons. In the same paper they demonstrated that if the logarithmic
NLS equation is modified with the substitution (1.2), then ª in every

electromagnetic field, sufficiently small gaussons move like classical

particles.º

I showed in a recent paper (Bodurov, 1996) that the same result is

valid for a large class of nonlinear complex field equations, which includes
the NLS equations. Thus, one is led to the following conjecture: If there

is a generalization of the Ehrenfest theorem from quantum mechanics to

the NLS equations, then such results can be viewed as its consequences.

The purpose of this paper is to show that, indeed, the statement of

Ehrenfest theorem can be extended to all NLS equations for which ^ c ,

c & is finite. The only modification is that the integrals in the pertinent
expectation values must be explicitely ª normalized,º and not the solutions

c (x, t).

2. A GENERALIZATION OF EHRENFEST THEOREM

Consider the family of all nonlinear SchroÈ dinger equations

i "
- c
- t

5 2
" 2

2m
¹ 2 c 1 V ( c * c ) c (2.1)

where c * is the complex conjugate of c and V 5 V ( c * c ) is any real function

of c * c such that equation (2.1) admits space-localized solutions. The various

constants of proportional ity which appear in the SchroÈ dinger equation proper

have been retained in (2.1), so that a comparison with the classical Ehrenfest

theorem can be made most conveniently.
Since (2.1) contains no interaction terms with external fields, the

NLS equations of this form will be called free. When electromagnetic

interaction terms are included in (2.1) according to the quantum mechan-

ics prescription
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i "
-
- t

® i "
-
- t

2 e F and 2 i " ¹ ® 2 i " ¹ 2 eA (c 5 1) (2.2)

the resulting equations (with p 5 2 i " ¹ )

i "
- c
- t

5 1 1

2m
( p 2 eA ) ? ( p 2 eA ) 1 e F 1 V ( c * c ) 2 c (2.3)

will also possess space-localized solutions if the potentials F and A are

constant in space and in time. This is seen by applying to equation (2.3) the

following transformation:

c 8(x, t) 5 ei q c (x, t)

where q 5 e ( F t 2 A ? x)/ " . The result is a free NLS equation for
c 8 like (2.1). Then, by observing that ^ c 8, c 8 & 5 ^ c , c & , the above

claim follows.

Here, we will consider solutions which remain localized not only when

the potentials are constant, but also when the potential variations within the

region of localization are sufficiently small. This condition can be adopted
for a definition of a stable solution of a free NLS equation. The stability of

NLS solutions will not be discussed here, since it is not directly related to

this paper ’ s topic, and since the stability of nonlinear wave equations in

general has been treated elsewhere (e.g., Grillakis et al., 1987; Straus, 1989,

Chapter 7). The stability of the logarithmic NLS solutions is discussed in

Bialynicki-Birula and Mycielski (1976).
The simplest means to define the position of any space-localized distribu-

tion r as a discrete entity is to give its ª center of gravity.º Setting r 5 c * c ,

one gets for the coordinates of the c -field position

Xi (t) 5
1

^ c , c & # c * c xi d 3x, i 5 1, 2, 3 (2.4)

where c is a localized solution of the NLS equation and xi are the space
coordinates. Here, the term ª c -field positionº will always mean the set

of values of the above three functionals. Clearly, the definition (2.4) is

completely independent of the equation for c as long as ^ c , c & remains

finite. These functionals, of course, are identical with the expectation

values of the position operators xi in quantum mechanics (QM). However,

no probabilistic interpretation will be attached to them or to any other
expectation values. Here, such would be entirely unnecessary, since there

is no stochastic data involved.

In addition, it should be noted that a solution c cannot be normalized

and remain a solution of the same nonlinear equation. Instead, the various
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expectation values and functionals must be ª normalizedº by dividing them

by ^ c , c & . If c is a solution of (2.3), with any F and A, then its norm ^ c , c &
given by (1.1) is a constant. The proof is exactly the same as for the linear
SchroÈ dinger equation, hence it is omitted.

Generalized Ehrenfest Theorem. The second time-derivative of the posi-

tion-vector functional X(t) given by (2.4) is proportional to the expectation

value of the Hermitian operator E 1 1±2 (( p 2 eA ) 3 B 2 B 3 ( p 2 eA ))

if they are evaluated with a space-localized solution of the NLS equation
(2.3). That is,

d 2

dt2 X(t) 5
e

m ^ c , c & # c * 1 E 1
1

2
(v 3 B 2 B 3 v) 2 c d 3x (2.5)

where E 5 2 ¹ F 2 - A/ - t and B 5 ¹ 3 A are the electric and magnetic

fields, respectively, and v 5 ( p 2 eA )/m 5 2 (i " ¹ 1 eA )/m is the velocity

operator of quantum mechanics.

Proof. For convenience, the NLS equation (2.3) will be written as

i "
- c
- t

5 H c 1 V c (2.6)

where H 5 ( p 2 eA ) ? ( p 2 eA )/2m 1 e F is the SchroÈ dinger operator. With
this notation, the first time-derivative of the functional Xi is

Vi 5
dXi

dt
5

1

^ c , c & # 1 c *xi
- c
- t

1
- c *

- t
xi c 2 d 3x

5
1

i " ^ c , c & # c * 1 [xi , H ] 1 xi V 2 V xi 2 c d 3x

5
1

m ^ c , c & # c *( pi 2 eAi) c d 3x

since obviously the function V ( c * c ) commutes with xi and the evaluation

of the commutator [xi , H ] is a routine result in QM. Thus, the velocity V(t)
of the localized c -field is identical with the expectation value of the QM

velocity operator v (even in the presence of a magnetic field)

V(t) 5
dX

dt
5 2

1

m ^ c , c & # c *(i " ¹ 1 eA ) c d 3x 5
1

^ c , c & # c *v c d 3x

(2.7)

With the same notation, the second time-derivative of X(t) is
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d 2X

dt2 5
dV

dt
5

1

^ c , c & # 1 c *v
- c
- t

1
- c *

- t
v c 1 c *

- v

- t
c 2 d 3x

5
1

^ c , c & # c * 1 1

i "
[v, H ] 2

e

m

- A

- t 2 c d 3x

1
1

i " m ^ c , c & # c *( p V 2 V p) c d 3x (2.8)

For any space-localized function c the integral containing the nonlinear term

is zero, as seen from the following:

# c *( p V 2 V p) c d 3x 5 i " # ( c * V ¹ c 2 c * ¹ ( V c )) d 3x

5 i " # V ¹ ( c * c ) d 3x 5 0

To evaluate the commutator

[v, H ] 5
m

2
[v, v ? v] 1 e[v, F ] 5

m

2
[v, v ? v] 2

ie "
m

¹ F (2.9)

we apply the commutator identity [L, JK ] 5 J [L, K ] 1 [L, J ]K to the ith
component of the first term

[vi , v ? v] 5 o
3

i 5 1

[vi , vj vj] 5 o
3

i 5 1

(vj [vi , vj] 1 [vi , vj]vj) (2.10)

The commutator of any two components of the velocity operator is

[vi , vj] 5
1

m 2 F 1 i " -
- xi

1 eAi 2 , 1 i " -
- xj

1 eAj 2 G
5

ie "
m 2 1 - Aj

- xi

2
- A i

- xj 2 5
ie "
m 2 ( ¹ 3 A )k 5

ie "
m 2 Bk

where the values of the indexes i, j, k are the cyclic permutations of 1, 2, 3.

Inserting the last into (2.10) yields

[vi , v ? v] 5
ie "
m 2 o

j Þ i, k
k Þ i, j

(vj Bk 1 Bkvj) 5
ie "
m 2 (v 3 B 2 B 3 v)i

when it is observed that now the values of the indexes i, j, k are all permuta-

tions of 1, 2, 3, and that the terms corresponding to the odd permutations
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enter the sum with a negative sign. Substituting this expression into (2.9)

and then the result into the first integral of (2.8) produces

d 2X

dt2 5
e

m ^ c , c & # c * 1 12 (v 3 B 2 B 3 v) 2 ¹ F 2
- A

- t 2 c d 3x

5
e

m ^ c , c & # c * 1 E 1
1

2
(v 3 B 2 B 3 v) 2 c d 3x

which completes the proof. n

It is clear from the preceding that:

(a) An alternative statement of the above theorem could be: The nonlinear
term V ( c * c ) does not contribute to the second time-derivatives of the position
functionals Xi.

(b) When the interaction is given only by a scalar potential U 5 U (x)

the statement of the same theorem reduces to

d 2X

dt2 5 2
1

m ^ c , c & # c * c ¹ U d 3x (2.11)

This is identical with the statement of the classical Ehrenfest theorem,

except that the integral is divided by ^ c , c & , since the solutions c are

not normalized, as noted earlier. However, the consequences of the two
theorems, even in this case, are not the same. This is due to the well-

known fact that the linear SchroÈ dinger equation with no external interaction,

unlike the nonlinear ones, does not possess space-localized solutions. Note

that the wave packets of quantum mechanics do not qualify for space-

localized solutions. A remarkable consequence of the generalized Ehrenfest

theorem is stated as the following:

Corollary. If the potentials F and A change sufficiently slowly in

space, then the equation of motion of the localized c -field, as a discrete

entity, is identical to that of a point-charge e placed in the same electromag-

netic field, and is a manifestation of a ª Lorentz-force actionº exerted on
the c -field by the electric E(X ) and magnetic B(X ) fields. This equation is

m
d 2X

dt2 5 eE(X ) 1 e
dX

dt
3 B(X ) (2.12)

where the c -field position X is given by the functionals (2.4), and the c -

field mass by the constant m which appears in the corresponding NLS equa-

tion (2.3).

Proof. The criterion for the condition ª F and A change sufficiently

slowly in spaceº is that the variations of the potentials F and A within
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the spatial extent of the c -field must be negligibly small, so that they

can be treated as constant in that region. A quantitative criterion is derived

in Bodurov (1996). When this condition is met, we see that a change of
the integration variables xi 5 ri 1 Xi in (2.5) gives for the ith component

of the first term

# Ei c * c d 3x 5 2 # 1 - F (r 1 X )

- Xi

1
- Ai (r 1 X )

- t 2 c (r 1 X )* c (r 1 X ) d 3r

5 2 1 - F (X )

- Xi

1
- A i (X )

- t 2 # c (r 1 X )* c (r 1 X ) d 3r

5 ^ c , c & Ei (X )

since by the above assumption F (r 1 X ) and A(r 1 X ) can be replaced

with F (X ) and A(X ) in the region of localization. Similarly, with the same

change of variables, the second term of (2.5) becomes

1

2 # c *(v 3 B 2 B 3 v) c d 3x 5 2 B(X ) 3 # c *v c d 3x

5 ^ c , c &
dX

dt
3 B(X )

in accordance with (2.7). Inserting the last two results into (2.5) completes

the proof. n

This corollary is a special case of a more general result, obtained by

an entirely different approach in Bodurov (1996).

3. CONCLUSIONS

The generalized Ehrenfest theorem and its corollary establish a deep

link between the nonlinear SchroÈ dinger equations and classical mechanics
and electrodynamics. This is additional evidence that the space-localized

solutions of certain nonlinear wave equations can be used to represent elemen-
tary charges ( particles). This paper contains results which indicate that such

a representation is on a level deeper than classical field theory, namely:

(a) The motion of the c -field as a discrete entity obeys the laws of

classical mechanics and those of classical electrodynamics (2.12) if the inter-
action of the c -field with an external electromagnetic field is defined by the

rules of quantum mechanics applied to the corresponding NLS equation.

(b) The relation of the velocity V and momentum P of a localized c -

field is the same as that for a classical point charge, P 5 mV 1 eA, as seen
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from (2.7), if P is calculated as the expectation value of the QM momentum

operator and the interaction with the external electromagnetic field is defined

according to the rules of quantum mechanics.
(c) The fact that the above correspondences hold only when the external

fields are of sufficiently low intensity is qualitatively correlated with the

result of high-energy physics that particles lose their identity when subjected

to very high intensity fields.

It was shown that physically meaningful results, with remarkable gener-

ality, are obtained if the interaction between the nonlinear c -field and the
electromagnetic field is defined according to rule (1.2). We think it is very

significant that such results have not been derived, and most likely cannot

be derived, from any other definition of the above interaction.
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